organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*N*-Phenylimino)bis[phosphonic bis(diphenylamide)]

Daniel Chartrand* and Garry S. Hanan

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7 Correspondence e-mail: daniel.chartrand.1@umontreal.ca

Received 18 September 2007; accepted 3 October 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.089; data-to-parameter ratio = 15.5.

The title compound, NC₆H₅[PO(NHC₆H₅)₂]₂ or C₃₀H₂₉N₅-O₂P₂, was obtained as a side product during the addition of aniline to an amidoyl chloride, using PCl₅ as chlorinating agent. The title compound was first synthesized by Murray & Woodward [(1989). *Phosphorus Sulfur Silicon*, **41**, 399–403], again as a by-product, but no crystallographic evidence was given. The title compound crystallizes as two crystallographically unique molecules that form layers in the *ab* plane through O···H—N hydrogen-bond interactions, with an O···N minimum distance of 2.769 (2)Å and a maximum distance of 3.117 (2) Å. There is also one intramolecular O···H—N bond present in each of the two molecules, with an average O···N distance of 2.959 (4) Å.

Related literature

Full synthetic details for this compound have been published by Murray & Woodward (1989).

Experimental

Crystal data

 $\begin{array}{l} C_{30}H_{29}N_5O_2P_2\\ M_r = 553.52\\ Orthorhombic, Pbca\\ a = 24.5585 \ (11) \ \text{\AA}\\ b = 18.5726 \ (8) \ \text{\AA}\\ c = 25.2655 \ (11) \ \text{\AA} \end{array}$

Data collection

Bruker SMART 6000 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.758, T_{max} = 0.949$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.089$	independent and constrained
S = 1.02	refinement
11291 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
728 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
10 restraints	

V = 11524.0 (9) Å³

 $0.25 \times 0.15 \times 0.03 \text{ mm}$

139703 measured reflections

11291 independent reflections

7252 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 1.66 \text{ mm}^-$

T = 150 (2) K

 $R_{\rm int}=0.046$

Z = 16

Table 1

Hydrogen-bond	geometry	(À,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N2-H2 A ···O11	0.866 (9)	2.386 (14)	3.117 (2)	142.4 (17)
$N3-H3A\cdotsO11$ $N4-H4A\cdotsO12^{i}$	0.868 (9)	1.911 (10)	2.769 (2)	169.2 (18)
	0.870 (7)	2.220 (10)	3.032 (2)	155.3 (17)
$N4-H4A\cdotsO1$ $N12-H12B\cdotsO1^{ii}$	0.870 (7)	2.455 (17)	2.959 (2)	117.5 (15)
	0.867 (9)	2.221 (11)	3.044 (2)	158.4 (17)
$N12 - H12B \cdots O12$ $N14 - H14B \cdots O2^{iii}$	0.867 (9)	2.471 (18)	2.963 (2)	116.6 (15)
	0.872 (7)	2.002 (8)	2.856 (2)	166.0 (18)
$N15 - H15B \cdots O2^{iii}$	0.868 (9)	2.138 (11)	2.962 (2)	158.4 (18)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (iii) $x + \frac{1}{2}$, y, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *UdMX* (local program).

We are grateful to the Natural Sciences and Engineering Research Council of Canada, the Ministère de l'Education du Québec, the Centre for Self-Assembled Chemical Structures and the Université de Montréal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2046).

References

- Bruker (1997). SHELXTL. Release 5.10. Bruker AXS Inc., Madison, USA. Bruker (2004). APEX2 (Release 1.1.2.2) and SAINT (Release 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Murray, M. & Woodward, G. (1989). Phosphorus Sulfur Silicon, 41, 399–403.Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, 04428 [doi:10.1107/S1600536807048520]

(N-Phenylimino)bis[phosphonic bis(diphenylamide)]

D. Chartrand and G. S. Hanan

Comment

The packing along the a-b plane is dominated by hydrogen-bonding interactions. Both crystallographically different molecules show the same interactions. There is one amine which forms an intramolecular hydrogen bond and one intermolecular hydrogen bond; two amines with only one intermolecular interaction, and lastly one that has no intermolecular interactions. Every oxygen atom is implicated in two hydrogen-bonding interactions.

Along the A axis, the intermolecular hydrogen bonds are formed by alternating nitrogen and oxygen atoms, two per molecule. Along the B axis, the interactions zigzag through two nitrogen atoms on one molecule forming an H bond to one oxygen atom on the other molecule. Along the C axis, only weak van der Waals forces can be seen between the aromatic rings, with no π stacking interactions visible.

Experimental

The title compound was formed as a side product from an amidine synthesis, involving excess aniline (reagent grade (99%); purified by distillation prior to use) and PCl₅ (reagent grade (95%)), the latter of which forms POCl₃ during the reaction (all reagents are from Sigma-Aldrich). It is believed that (Ph—NH)₃PO is then formed and dimerizes to the title compound once it is treated with aqueous solution of KOH. The title compound was previously published by Murray and Woodward in 1989. The actual crystals were formed by slow evaporation of an ethanolic solution of the title compound.

Refinement

All non-H atoms were refined by full-matrix least-squares with anisotropic displacement parameters. The H atoms bonded to C atoms were generated geometrically (C—H 0.95 Å) and were included in the refinement in the riding model approximation. The H atoms bonded to N atoms were generated geometrically, but their position was left to refine, with a restraint on the N—H distance set to 0.88 Å with a standard deviation of 0.01 Å. Their temperature factors of all H atoms were set to 1.2 times those of the equivalent isotropic temperature factors of the parent site.

Figures

Fig. 1. a *ORTEP* view of the first crystallographically independent molecule of the title compound. Thermal ellipsoids are shown at 50% probability levels, H atoms of C atoms are omitted for clarity.

Fig. 2. b *ORTEP* view of the second crystallographically independent molecule of the title compound. Thermal ellipsoids are shown at 50% probability levels, H atoms of C atoms are omitted for clarity.

Fig. 3. The packing of the compound, viewed along the c axis, showing the intermolecular hydrogen bonding, H atoms of C atoms are omitted for clarity.

 $F_{000} = 4640$

 $\lambda = 1.54178 \text{ Å}$

 $\theta = 6.9 - 142.3^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$

T = 150 (2) KRectangular, yellow

 $0.25\times0.15\times0.03~mm$

 $D_{\rm x} = 1.276 \text{ Mg m}^{-3}$ Cu Ka radiation

Cell parameters from 9956 reflections

(N-Phenylimino)bis[phosphonic bis(diphenylamide)]

Crystal data

 $C_{30}H_{29}N_5O_2P_2$ $M_r = 553.52$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 24.5585 (11) Å b = 18.5726 (8) Å c = 25.2655 (11) Å V = 11524.0 (9) Å³ Z = 16

Data collection

Bruker SMART 6000 diffractometer	11291 independent reflections
Radiation source: Rotating Anode	7252 reflections with $I > 2\sigma(I)$
Monochromator: Montel 200 optics	$R_{\rm int} = 0.046$
Detector resolution: 5.5 pixels mm ⁻¹	$\theta_{\text{max}} = 72.1^{\circ}$
T = 150(2) K	$\theta_{\min} = 3.5^{\circ}$
ω scans	$h = -30 \rightarrow 30$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -21 \rightarrow 22$
$T_{\min} = 0.758, T_{\max} = 0.949$	$l = -30 \rightarrow 31$
139703 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
11291 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
728 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
10 restraints	Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.000171 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.65576 (2)	0.48585 (3)	0.754249 (19)	0.02444 (12)
P2	0.53618 (2)	0.50155 (3)	0.73556 (2)	0.02467 (12)
01	0.65139 (5)	0.56457 (7)	0.75262 (5)	0.0290 (3)
O2	0.48667 (5)	0.45736 (7)	0.74287 (5)	0.0286 (3)
N1	0.59122 (6)	0.45317 (8)	0.75373 (6)	0.0248 (4)
N2	0.68598 (7)	0.44726 (9)	0.80493 (7)	0.0293 (4)
H2A	0.7132 (6)	0.4203 (9)	0.7958 (7)	0.035*
N3	0.69061 (7)	0.44926 (9)	0.70599 (7)	0.0281 (4)
H3A	0.7037 (7)	0.4068 (6)	0.7128 (7)	0.034*
N4	0.53229 (6)	0.57819 (9)	0.76724 (6)	0.0263 (4)
H4A	0.5573 (6)	0.6086 (8)	0.7574 (7)	0.032*
N5	0.54844 (7)	0.52345 (9)	0.67328 (7)	0.0297 (4)
H5A	0.5804 (5)	0.5158 (10)	0.6614 (7)	0.036*
C11	0.58426 (7)	0.37484 (10)	0.75339 (8)	0.0291 (5)
C12	0.58079 (8)	0.33875 (11)	0.80111 (9)	0.0353 (5)
H12A	0.5838	0.3642	0.8336	0.042*
C13	0.57285 (9)	0.26438 (12)	0.80081 (10)	0.0473 (7)
H13A	0.5708	0.2387	0.8333	0.057*
C14	0.56801 (9)	0.22814 (13)	0.75364 (10)	0.0504 (7)

H14A	0.5625	0.1775	0.7537	0.061*
C15	0.57104 (9)	0.26442 (13)	0.70659 (11)	0.0509 (7)
H15A	0.5671	0.2390	0.6742	0.061*
C16	0.57988 (8)	0.33834 (12)	0.70596 (9)	0.0389 (6)
H16A	0.5829	0.3634	0.6733	0.047*
C21	0.67473 (8)	0.45363 (11)	0.85936 (8)	0.0309 (5)
C22	0.70931 (9)	0.41966 (12)	0.89513 (9)	0.0408 (6)
H22A	0.7394	0.3924	0.8827	0.049*
C23	0.69967 (11)	0.42569 (14)	0.94892 (9)	0.0537 (7)
H23A	0.7235	0.4027	0.9732	0.064*
C24	0.65608 (11)	0.46445 (14)	0.96771 (9)	0.0593 (8)
H24A	0.6498	0.4683	1.0047	0.071*
C25	0.62165 (11)	0.49771 (13)	0.93227 (9)	0.0520(7)
H25A	0.5913	0.5242	0.9450	0.062*
C26	0.63085 (9)	0.49286 (12)	0.87810 (8)	0.0375 (5)
H26A	0.6071	0.5164	0.8540	0.045*
C31	0.68792 (8)	0.46881 (11)	0.65188 (8)	0.0300 (5)
C32	0.68773 (10)	0.41429 (13)	0.61464 (9)	0.0525 (7)
H32A	0.6882	0.3654	0.6256	0.063*
C33	0.68685 (12)	0.43123 (15)	0.56134 (10)	0.0706 (9)
H33A	0.6868	0.3936	0.5358	0.085*
C34	0.68613 (11)	0.50187 (14)	0.54469 (9)	0.0583 (7)
H34A	0.6858	0.5133	0.5080	0.070*
C35	0.68586 (10)	0.55557 (13)	0.58215 (9)	0.0495 (7)
H35A	0.6852	0.6045	0.5712	0.059*
C36	0.68658 (9)	0.53923 (12)	0.63550 (8)	0.0374 (5)
H36A	0.6862	0.5769	0.6609	0.045*
C41	0.51105 (8)	0.58915 (10)	0.81928 (8)	0.0282 (5)
C42	0.46391 (8)	0.55543 (12)	0.83649 (9)	0.0375 (5)
H42A	0.4446	0.5238	0.8136	0.045*
C43	0.44509 (9)	0.56827 (13)	0.88754 (9)	0.0459 (6)
H43A	0.4134	0.5440	0.8996	0.055*
C44	0.47129 (10)	0.61517 (13)	0.92088 (9)	0.0467 (6)
H44A	0.4581	0.6234	0.9557	0.056*
C45	0.51736 (10)	0.65031 (13)	0.90268 (9)	0.0480 (6)
H45A	0.5354	0.6840	0.9249	0.058*
C46	0.53746 (9)	0.63701 (12)	0.85246 (8)	0.0400 (6)
H46A	0.5695	0.6608	0.8407	0.048*
C51	0.51003 (8)	0.54874 (11)	0.63601 (8)	0.0298 (5)
C52	0.45839 (9)	0.57113 (11)	0.65102 (8)	0.0365 (5)
H52A	0.4480	0.5703	0.6872	0.044*
C53	0.42208 (9)	0.59473 (12)	0.61288 (9)	0.0434 (6)
H53A	0.3868	0.6101	0.6234	0.052*
C54	0.43579 (10)	0.59647 (14)	0.56070 (10)	0.0569 (7)
H54A	0.4105	0.6131	0.5350	0.068*
C55	0.48704 (11)	0.57370 (15)	0.54554 (10)	0.0634 (8)
H55A	0.4970	0.5748	0.5092	0.076*
C56	0.52398 (10)	0.54928 (13)	0.58302 (9)	0.0477 (6)
H56A	0.5589	0.5329	0.5722	0.057*

P11	0.78654 (2)	0.27729 (3)	0.73290 (2)	0.02464 (12)
P12	0.90624 (2)	0.29401 (3)	0.75486 (2)	0.02492 (12)
011	0.73709 (5)	0.32157 (7)	0.73999 (5)	0.0295 (3)
012	0.90202 (5)	0.21522 (7)	0.75375 (5)	0.0298 (3)
N11	0.84200 (6)	0.32634 (8)	0.74910 (6)	0.0243 (4)
N12	0.78249 (6)	0.20195 (8)	0.76629 (6)	0.0251 (4)
H12B	0.8073 (6)	0.1707 (8)	0.7580 (7)	0.030*
N13	0.79872 (7)	0.25319 (9)	0.67107 (6)	0.0309 (4)
H13B	0.8304 (5)	0.2642 (10)	0.6590 (7)	0.037*
N14	0.94452 (7)	0.33005 (9)	0.70872 (7)	0.0283 (4)
H14B	0.9577 (7)	0.3717 (6)	0.7180 (7)	0.034*
N15	0.93244 (7)	0.33257 (9)	0.80766 (6)	0.0286 (4)
H15B	0.9548 (6)	0.3671 (8)	0.7995 (7)	0.034*
C111	0.83487 (7)	0.40416 (11)	0.74594 (8)	0.0271 (5)
C112	0.82790 (8)	0.44297 (11)	0.79193 (9)	0.0344 (5)
H11A	0.8290	0.4193	0.8252	0.041*
C113	0.81929 (9)	0.51689 (12)	0.78940 (10)	0.0464 (6)
H11B	0.8146	0.5438	0.8210	0.056*
C114	0.81759 (9)	0.55119 (12)	0.74101 (11)	0.0497 (7)
H11C	0.8117	0.6017	0.7394	0.060*
C115	0.82449 (9)	0.51218 (12)	0.69487 (10)	0.0471 (6)
H11D	0.8230	0.5358	0.6615	0.057*
C116	0 83359 (8)	0 43834 (11)	0 69735 (9)	0.0362(5)
H11E	0.8389	0.4115	0.6658	0.043*
C121	0.75911 (8)	0.19211 (10)	0.81755 (7)	0.0264(5)
C122	0.71505 (8)	0.23221(11)	0.83540 (8)	0.0201(5) 0.0342(5)
H12C	0.6996	0.2687	0.8137	0.041*
C123	0.69384 (9)	0.2007 0.21837(13)	0.88524 (8)	0.0413 (6)
H12D	0.6641	0.2464	0.8977	0.050*
C124	0.71469 (9)	0.16517(12)	0.91707 (8)	0.0400 (6)
H12F	0.6995	0.1564	0.9510	0.048*
C125	0.75813 (9)	0.12454(11)	0.89901 (8)	0.0381 (6)
H12F	0.75815 ())	0.0872	0.9205	0.046*
C126	0.78043 (8)	0.0372 0.13834 (11)	0.84969 (8)	0.040
H12G	0.8106	0.1108	0.8377	0.0325 (3)
C131	0.75926 (8)	0.23638 (10)	0.63213 (8)	0.039
C132	0.73720(8) 0.70794(9)	0.23038(10) 0.21190(11)	0.03213(8) 0.64540(8)	0.0303(3)
H13C	0.70794 (9)	0.2051	0.6815	0.0377 (3)
C133	0.67069 (10)	0.2031 0.10726(13)	0.60574 (10)	0.045
H13D	0.6354	0.19720 (13)	0.60574 (10)	0.0501 (7)
C124	0.69369 (11)	0.1004	0.55348 (10)	0.000°
U134 U12E	0.06508 (11)	0.20033 (14)	0.53546 (10)	0.0575 (8)
C125	0.0378 0.72407 (11)	0.1900 0.22142(12)	0.3200	0.009°
U135	0.73497 (11)	0.23142 (13)	0.54054 (9)	0.0510(7)
C126	0.7444	0.2380	0.5042	0.002°
U130	0.77203 (10)	0.24003 (12)	0.57950 (8)	0.0390 (0)
C141	0.00//	0.2043	0.5700	0.0240 (5)
C141	$0.94207(\delta)$	0.31230(12) 0.24204(12)	0.03441(8)	0.0340 (3)
U142	0.93114 (9)	0.24394 (12)	0.03029 (8)	0.0393 (0)
П14C	0.9248	0.2001	0.0008	0.04/*

0.58253 (9) 0.5704 0.54632 (10) 0.5094	0.0566 (7) 0.068* 0.0787 (10)
0.5704 0.54632 (10) 0.5094	0.068* 0.0787 (10)
0.54632 (10)	0.0787 (10)
0 5094	
0.5074	0.094*
0.56418 (10)	0.0830 (11)
0.5394	0.100*
0.61791 (9)	0.0575 (8)
0.6298	0.069*
0.85851 (8)	0.0286 (5)
0.89471 (8)	0.0379 (5)
0.8856	0.045*
0.94370 (9)	0.0485 (6)
0.9681	0.058*
0.95780 (9)	0.0459 (6)
0.9916	0.055*
0.92205 (8)	0.0370 (5)
0.9314	0.044*
0.87282 (7)	0.0294 (5)
0 8487	0.035*
	0.5394 0.61791 (9) 0.6298 0.85851 (8) 0.89471 (8) 0.8856 0.94370 (9) 0.9681 0.95780 (9) 0.9916 0.92205 (8) 0.9314 0.87282 (7) 0.8487

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0215 (3)	0.0230 (3)	0.0288 (3)	-0.0004 (2)	-0.0015 (2)	0.0018 (2)
P2	0.0216 (3)	0.0234 (3)	0.0289 (3)	0.0001 (2)	-0.0015 (2)	0.0010 (2)
01	0.0247 (8)	0.0224 (7)	0.0399 (9)	-0.0023 (6)	-0.0011 (6)	0.0000 (6)
O2	0.0234 (8)	0.0250 (8)	0.0375 (8)	-0.0015 (6)	-0.0006 (6)	-0.0009 (6)
N1	0.0214 (9)	0.0196 (9)	0.0333 (10)	-0.0009(7)	-0.0024 (7)	0.0017 (7)
N2	0.0244 (10)	0.0333 (11)	0.0303 (10)	0.0041 (8)	-0.0009 (8)	0.0025 (8)
N3	0.0284 (10)	0.0223 (10)	0.0335 (10)	0.0044 (7)	0.0032 (8)	0.0036 (8)
N4	0.0235 (9)	0.0238 (10)	0.0316 (9)	-0.0035 (7)	0.0019 (7)	0.0019 (8)
N5	0.0240 (10)	0.0350 (10)	0.0301 (10)	0.0035 (8)	0.0009 (8)	0.0031 (8)
C11	0.0193 (11)	0.0226 (11)	0.0454 (13)	0.0000 (8)	-0.0020 (9)	0.0004 (10)
C12	0.0294 (13)	0.0303 (13)	0.0462 (14)	-0.0034 (9)	-0.0085 (10)	0.0064 (10)
C13	0.0335 (14)	0.0321 (14)	0.0763 (19)	-0.0060 (11)	-0.0137 (13)	0.0190 (13)
C14	0.0383 (15)	0.0219 (13)	0.091 (2)	-0.0028 (10)	-0.0063 (14)	0.0001 (13)
C15	0.0436 (15)	0.0357 (15)	0.0735 (19)	-0.0064 (11)	0.0061 (13)	-0.0171 (13)
C16	0.0363 (14)	0.0316 (13)	0.0489 (14)	-0.0031 (10)	0.0037 (11)	-0.0055 (11)
C21	0.0300 (12)	0.0309 (13)	0.0317 (12)	-0.0065 (9)	-0.0040 (9)	0.0052 (9)
C22	0.0413 (14)	0.0396 (14)	0.0416 (14)	-0.0001 (11)	-0.0066 (11)	0.0100 (11)
C23	0.0658 (19)	0.0572 (18)	0.0383 (15)	-0.0027 (14)	-0.0118 (13)	0.0168 (13)
C24	0.083 (2)	0.065 (2)	0.0302 (14)	-0.0045 (16)	0.0029 (14)	0.0099 (13)
C25	0.0602 (18)	0.0575 (18)	0.0384 (14)	0.0019 (14)	0.0087 (12)	0.0023 (13)
C26	0.0388 (14)	0.0409 (14)	0.0326 (12)	0.0001 (11)	-0.0013 (10)	0.0040 (10)
C31	0.0267 (12)	0.0309 (12)	0.0324 (12)	0.0030 (9)	0.0023 (9)	0.0045 (9)
C32	0.087 (2)	0.0325 (15)	0.0375 (14)	0.0138 (13)	0.0048 (13)	0.0008 (11)
C33	0.129 (3)	0.0465 (18)	0.0360 (15)	0.0196 (17)	0.0039 (16)	-0.0059 (13)
C34	0.090 (2)	0.0552 (18)	0.0301 (13)	0.0126 (15)	0.0068 (13)	0.0077 (13)

C35	0.0700 (19)	0.0373 (15)	0.0411 (14)	-0.0001 (13)	0.0034 (13)	0.0105 (12)
C36	0.0467 (15)	0.0295 (13)	0.0359 (13)	-0.0020 (10)	0.0037 (11)	0.0032 (10)
C41	0.0277 (12)	0.0246 (12)	0.0322 (12)	0.0060 (9)	-0.0020 (9)	0.0025 (9)
C42	0.0318 (13)	0.0374 (14)	0.0433 (13)	-0.0028 (10)	0.0049 (10)	-0.0086 (11)
C43	0.0396 (15)	0.0496 (16)	0.0485 (15)	-0.0009 (12)	0.0117 (12)	-0.0034 (12)
C44	0.0524 (17)	0.0537 (17)	0.0340 (13)	0.0093 (13)	0.0050 (12)	-0.0034 (12)
C45	0.0565 (17)	0.0503 (17)	0.0373 (14)	-0.0059 (13)	-0.0046 (12)	-0.0095 (12)
C46	0.0412 (14)	0.0402 (14)	0.0386 (13)	-0.0092 (11)	-0.0026 (11)	-0.0019 (11)
C51	0.0313 (12)	0.0266 (12)	0.0314 (12)	-0.0017 (9)	-0.0056 (9)	0.0025 (9)
C52	0.0392 (14)	0.0335 (13)	0.0366 (13)	0.0045 (10)	-0.0066 (10)	0.0013 (10)
C53	0.0371 (14)	0.0413 (15)	0.0518 (15)	0.0074 (11)	-0.0113 (11)	0.0038 (12)
C54	0.0501 (18)	0.071 (2)	0.0498 (17)	0.0030 (14)	-0.0197 (13)	0.0154 (14)
C55	0.0606 (19)	0.095 (2)	0.0342 (15)	0.0061 (17)	-0.0092 (13)	0.0147 (14)
C56	0.0385 (15)	0.0673 (19)	0.0374 (14)	0.0020 (12)	-0.0021 (11)	0.0071 (12)
P11	0.0224 (3)	0.0238 (3)	0.0277 (3)	-0.0001 (2)	0.0000 (2)	0.0015 (2)
P12	0.0217 (3)	0.0230 (3)	0.0301 (3)	0.0007 (2)	0.0011 (2)	0.0004 (2)
011	0.0238 (8)	0.0254 (8)	0.0394 (8)	0.0018 (6)	0.0009 (6)	0.0057 (6)
O12	0.0270 (8)	0.0213 (7)	0.0410 (9)	0.0020 (6)	0.0014 (6)	0.0004 (6)
N11	0.0213 (9)	0.0201 (9)	0.0314 (10)	0.0012 (7)	0.0000 (7)	0.0000 (7)
N12	0.0248 (9)	0.0217 (9)	0.0290 (9)	0.0038 (7)	0.0032 (7)	0.0006 (7)
N13	0.0271 (10)	0.0383 (11)	0.0274 (10)	-0.0055 (8)	0.0023 (8)	-0.0006 (8)
N14	0.0276 (10)	0.0250 (10)	0.0324 (10)	-0.0046 (8)	0.0047 (8)	-0.0036 (8)
N15	0.0257 (10)	0.0299 (11)	0.0302 (10)	-0.0057 (7)	0.0006 (8)	0.0010 (8)
C111	0.0178 (11)	0.0247 (11)	0.0390 (13)	0.0007 (8)	0.0000 (9)	0.0008 (9)
C112	0.0284 (12)	0.0296 (13)	0.0451 (14)	0.0045 (9)	-0.0043 (10)	-0.0043 (10)
C113	0.0355 (14)	0.0324 (14)	0.0714 (18)	0.0062 (11)	-0.0059 (12)	-0.0135 (13)
C114	0.0356 (14)	0.0215 (13)	0.092 (2)	0.0035 (10)	0.0057 (14)	0.0059 (14)
C115	0.0384 (14)	0.0342 (15)	0.0688 (18)	0.0025 (11)	0.0093 (12)	0.0188 (13)
C116	0.0313 (13)	0.0305 (13)	0.0469 (14)	0.0011 (10)	0.0091 (10)	0.0069 (10)
C121	0.0250 (11)	0.0243 (12)	0.0299 (11)	-0.0062 (8)	-0.0001 (9)	-0.0011 (9)
C122	0.0289 (12)	0.0387 (14)	0.0351 (12)	0.0017 (10)	0.0043 (10)	0.0049 (10)
C123	0.0316 (13)	0.0504 (16)	0.0419 (14)	-0.0012 (11)	0.0105 (10)	-0.0005 (12)
C124	0.0436 (15)	0.0479 (15)	0.0286 (12)	-0.0145 (12)	0.0060 (10)	0.0022 (11)
C125	0.0513 (16)	0.0321 (14)	0.0310 (12)	-0.0066 (11)	-0.0033 (11)	0.0052 (10)
C126	0.0390 (14)	0.0245 (12)	0.0339 (12)	0.0006 (9)	-0.0013 (10)	0.0002 (9)
C131	0.0358 (13)	0.0241 (12)	0.0310 (12)	0.0029 (9)	-0.0041 (9)	0.0001 (9)
C132	0.0421 (14)	0.0346 (14)	0.0365 (13)	-0.0067 (11)	-0.0038 (11)	-0.0006 (10)
C133	0.0404 (15)	0.0519 (17)	0.0579 (17)	-0.0046 (12)	-0.0089 (13)	-0.0176 (13)
C134	0.0557 (18)	0.0668 (19)	0.0493 (16)	0.0148 (14)	-0.0231 (14)	-0.0260 (14)
C135	0.0667 (19)	0.0588 (18)	0.0292 (13)	0.0174 (14)	-0.0086 (12)	-0.0064 (12)
C136	0.0471 (15)	0.0389 (14)	0.0329 (12)	0.0071 (11)	-0.0009 (11)	-0.0003 (10)
C141	0.0312 (13)	0.0366 (13)	0.0342 (12)	-0.0014 (10)	0.0089 (10)	-0.0030 (10)
C142	0.0450 (15)	0.0375 (14)	0.0359 (13)	-0.0016 (11)	0.0076 (11)	-0.0041 (10)
C143	0.072 (2)	0.0527 (18)	0.0447 (15)	-0.0124 (14)	0.0109 (14)	-0.0123 (13)
C144	0.122 (3)	0.078 (2)	0.0360 (16)	-0.028 (2)	0.0170 (17)	-0.0129 (16)
C145	0.142 (3)	0.068 (2)	0.0389 (16)	-0.031 (2)	0.0199 (18)	0.0012 (15)
C146	0.091 (2)	0.0434 (16)	0.0379 (14)	-0.0185 (14)	0.0134 (14)	-0.0015 (12)
C151	0.0261 (12)	0.0295 (12)	0.0302 (11)	0.0019 (9)	-0.0039 (9)	0.0017 (9)
C152	0.0394 (14)	0.0381 (14)	0.0361 (13)	-0.0116 (10)	-0.0064 (10)	-0.0003 (10)

C153 C154 C155 C156	0.0618 (17) 0.0575 (17) 0.0389 (14) 0.0294 (12)	0.0493 (16) 0.0507 (17) 0.0357 (14) 0.0286 (12)	0.0342 (13) 0.0294 (13) 0.0363 (13) 0.0301 (11)	-0.0150(13) -0.0083(12) -0.0035(10) -0.0005(9)	-0.0050 (12) 0.0044 (11) 0.0041 (10) -0.0013 (9)	-0.0093 (11) -0.0056 (11) -0.0002 (10) -0.0025 (9)
	(8 0)					
Geometric paran	neters (A, °)					
P101		1.4665 (13)	P11-	O11	1.477	75 (13)
P1—N3		1.6374 (17)	P11—	N12	1.636	68 (16)
P1—N2		1.6444 (17)	P11-	N13	1.652	22 (17)
P1—N1		1.6973 (16)	P11-	N11	1.688	38 (16)
P2—O2		1.4787 (13)	P12-	012	1.467	72 (13)
P2—N4		1.6359 (17)	P12—	N14	1.640	04 (17)
P2—N5		1.6530 (17)	P12—	N15	1.645	51 (17)
P2—N1		1.6866 (15)	P12—	N11	1.694	14 (15)
N1-C11		1.465 (2)	N11—	-C111	1.458	8 (2)
N2-C21		1.408 (2)	N12—	-C121	1.428	3 (2)
N2—H2A		0.866 (9)	N12—	-H12B	0.867	7 (9)
N3—C31		1.416 (2)	N13—	-C131	1.416	5 (2)
N3—H3A		0.868 (9)	N13—	-H13B	0.860) (9)
N4—C41		1.429 (2)	N14—	-C141	1.411	(2)
N4—H4A		0.870 (7)	N14—	-H14B	0.872 (7)	
N5-C51		1.413 (2)	N15—	-C151	1.409 (2)	
N5—H5A		0.852 (9)	N15—	-H15B	0.868 (9)	
C11—C16		1.381 (3)	C111–	C112	1.378 (3)	
C11—C12		1.382 (3)	C111–	C116	1.382 (3)	
C12—C13		1.395 (3)	C112-	C113	1.391 (3)	
C12—H12A		0.9500	C112-	-H11A	0.9500	
C13—C14		1.374 (3)	C113-	C114	1.379 (3)	
C13—H13A		0.9500	C113-	-H11B	0.9500	
C14—C15		1.369 (3)	C114-	C115	1.383 (3)	
C14—H14A		0.9500	C114-	-H11C	0.950	00
C15—C16		1.390 (3)	C115-	C116	1.391	(3)
C15—H15A		0.9500	C115-	-H11D	0.950	00
C16—H16A		0.9500	C116–	-H11E	0.950	00
C21—C26		1.384 (3)	C121-	C122	1.389	9(3)
C21—C22		1.392 (3)	C121–	C126	1.390)(2)
C22—C23		1.384 (3)	C122–	C123	1.387	7 (3)
C22—H22A		0.9500	C122–	-H12C	0.950	00
C23—C24		1.375 (3)	C123-	C124	1.373	3 (3)
C23—H23A		0.9500	C123-	-H12D	0.950	00
C24—C25		1.378 (3)	C124–	C125	1.384	4 (3)
C24—H24A		0.9500	C124–	-H12E	0.950	00
C25—C26		1.390 (3)	C125–	C126	1.385	5 (3)
C25—H25A		0.9500	C125-	-H12F	0.950	00
C26—H26A		0.9500	C126–	-H12G	0.950	00
C31—C36		1.372 (3)	C131–	C132	1.381	(3)
C31—C32		1.382 (3)	C131-	C136	1.388	3 (3)
C32—C33		1.383 (3)	C132–	C133	1.384	4(3)

C32—H32A	0.9500	С132—Н13С	0.9500
C33—C34	1.378 (3)	C133—C134	1.369 (3)
С33—Н33А	0.9500	C133—H13D	0.9500
C34—C35	1.375 (3)	C134—C135	1.382 (3)
C34—H34A	0.9500	С134—Н13Е	0.9500
C35—C36	1.382 (3)	C135—C136	1.381 (3)
С35—Н35А	0.9500	C135—H13F	0.9500
С36—Н36А	0.9500	C136—H13G	0.9500
C41—C46	1.383 (3)	C141—C142	1.384 (3)
C41—C42	1.386 (3)	C141—C146	1.390 (3)
C42—C43	1.391 (3)	C142—C143	1.383 (3)
C42—H42A	0.9500	C142—H14C	0.9500
C43—C44	1.372 (3)	C143—C144	1.376 (3)
C43—H43A	0.9500	C143—H14D	0.9500
C44—C45	1.385 (3)	C144—C145	1.372 (3)
C44—H44A	0.9500	C144—H14E	0.9500
C45—C46	1.384 (3)	C145—C146	1.386 (3)
C45—H45A	0.9500	C145—H14F	0.9500
C46—H46A	0.9500	C146—H14G	0.9500
C51—C56	1.382 (3)	C151—C156	1.388 (3)
C51—C52	1.387 (3)	C151—C152	1.391 (3)
C52—C53	1.384 (3)	C152—C153	1.378 (3)
С52—Н52А	0.9500	С152—Н15С	0.9500
C53—C54	1.361 (3)	C153—C154	1.385 (3)
С53—Н53А	0.9500	C153—H15D	0.9500
C54—C55	1.382 (3)	C154—C155	1.379 (3)
C54—H54A	0.9500	С154—Н15Е	0.9500
C55—C56	1.388 (3)	C155—C156	1.382 (3)
C55—H55A	0.9500	C155—H15F	0.9500
C56—H56A	0.9500	C156—H15G	0.9500
O1—P1—N3	115.53 (8)	O11—P11—N12	111.31 (8)
O1—P1—N2	119.30 (8)	O11—P11—N13	114.46 (8)
N3—P1—N2	99.38 (9)	N12—P11—N13	105.47 (9)
O1—P1—N1	106.74 (8)	O11—P11—N11	109.46 (8)
N3—P1—N1	109.51 (8)	N12—P11—N11	112.66 (8)
N2—P1—N1	105.77 (8)	N13—P11—N11	103.25 (8)
O2—P2—N4	111.96 (8)	O12—P12—N14	115.70 (8)
O2—P2—N5	113.91 (8)	O12—P12—N15	118.51 (8)
N4—P2—N5	105.21 (9)	N14—P12—N15	100.05 (8)
O2—P2—N1	109.23 (8)	O12—P12—N11	106.62 (8)
N4—P2—N1	112.16 (8)	N14—P12—N11	109.15 (8)
N5—P2—N1	104.13 (8)	N15—P12—N11	106.23 (8)
C11—N1—P2	115.72 (12)	C111—N11—P11	115.12 (12)
C11—N1—P1	117.66 (12)	C111—N11—P12	117.89 (12)
P2—N1—P1	124.05 (9)	P11—N11—P12	125.49 (9)
C21—N2—P1	129.45 (14)	C121—N12—P11	126.94 (13)
C21—N2—H2A	117.5 (13)	C121—N12—H12B	114.6 (12)
P1—N2—H2A	113.1 (13)	P11—N12—H12B	113.9 (13)
C31—N3—P1	126.02 (14)	C131—N13—P11	126.36 (14)

C21 N2 112A	11(2(12)	C121 N12 1112D	115.2(12)
C31—N3—H3A P1 N3 H3A	110.2(13) 115.0(13)	CI31—NI3—HI3B D11 N12 H13B	115.2(13) 115.7(13)
C_{41} NA P2	115.0(15) 126.54(13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.7(13) 125.38(14)
$C_{41} = N_4 = 12$	120.34(13) 115.3(12)	C141 N14 H14R	123.38(14)
$D_{2} = N_{4} = H_{4} A$	113.5(12) 112.6(12)	D12 N14 U14D	110.0(13)
$\Gamma 2 - N4 - \Pi 4A$	112.0(13) 126.47(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.0(13)
C_{51} N_{5} V_{54}	120.47(14)	C151 - N15 - P12	123.32(14)
CSI—NS—HSA	113.9 (14)		118.2 (13)
P2—N5—H5A	117.5 (13)	P12—N15—H15B	112.0 (13)
	120.9 (2)		120.4 (2)
CI6—CII—NI	120.11 (18)		119.16 (18)
	118.93 (18)		120.45 (18)
C11—C12—C13	118.9 (2)	C111—C112—C113	119.8 (2)
C11—C12—H12A	120.5	C111—C112—H11A	120.1
C13—C12—H12A	120.5	C113—C112—H11A	120.1
C14—C13—C12	120.1 (2)	C114—C113—C112	120.1 (2)
C14—C13—H13A	119.9	C114—C113—H11B	120.0
C12—C13—H13A	119.9	C112—C113—H11B	120.0
C15-C14-C13	120.5 (2)	C113—C114—C115	120.1 (2)
C15-C14-H14A	119.7	C113—C114—H11C	120.0
C13-C14-H14A	119.7	C115—C114—H11C	120.0
C14—C15—C16	120.3 (2)	C114—C115—C116	119.9 (2)
C14—C15—H15A	119.8	C114—C115—H11D	120.1
C16—C15—H15A	119.8	C116—C115—H11D	120.1
C11—C16—C15	119.2 (2)	C111—C116—C115	119.8 (2)
C11—C16—H16A	120.4	C111—C116—H11E	120.1
C15—C16—H16A	120.4	C115—C116—H11E	120.1
C26—C21—C22	119.5 (2)	C122—C121—C126	119.29 (19)
C26—C21—N2	122.08 (19)	C122—C121—N12	122.61 (18)
C22—C21—N2	118.5 (2)	C126—C121—N12	118.06 (18)
C23—C22—C21	119.8 (2)	C123—C122—C121	119.2 (2)
С23—С22—Н22А	120.1	C123—C122—H12C	120.4
C21—C22—H22A	120.1	C121—C122—H12C	120.4
C24—C23—C22	121.0 (2)	C124—C123—C122	121.7 (2)
C24—C23—H23A	119.5	C124—C123—H12D	119.2
C^{22} C^{23} H^{23} A	119.5	C122 - C123 - H12D	119.2
$C_{23} = C_{24} = C_{25}$	119.2 (2)	C_{123} C_{124} C_{125} C_{125}	119.2
$C_{23} = C_{24} = C_{23}$	119.2 (2)	C123—C124—C125	119.1 (2)
$C_{23} = C_{24} = H_{24A}$	120.4	C125_C124_H12E	120.4
$C_{23} = C_{24} = H_{24} + H_{24}$	120.4	C_{123} C_{124} C_{125} C_{126}	120.4
$C_{24} = C_{25} = C_{20}$	120.7 (2)	$C_{124} - C_{125} - C_{120}$	120.0 (2)
C_{24} C_{25} H_{25A}	119.6	C124 - C125 - H12F	120.0
C_{20} C_{25} H_{25A}	119.6	C126—C125—F112F	120.0
$C_{21} - C_{20} - C_{23}$	119.8 (2)	C125 - C126 - C121	120.7 (2)
C21—C26—H26A	120.1	C125—C126—H12G	119.7
C25—C26—H26A	120.1	C121—C126—H12G	119.7
$C_{30} - C_{31} - C_{32}$	119.5 (2)	C132—C131—C136	119.7 (2)
C36—C31—N3	122.46 (19)	C132—C131—N13	121.90 (19)
C32—C31—N3	118.01 (19)	C136—C131—N13	118.37 (19)
C31—C32—C33	119.8 (2)	C131—C132—C133	119.5 (2)
C31—C32—H32A	120.1	C131—C132—H13C	120.3

C33—C32—H32A	120.1	С133—С132—Н13С	120.3
C34—C33—C32	120.9 (2)	C134—C133—C132	121.3 (2)
С34—С33—Н33А	119.5	C134—C133—H13D	119.4
С32—С33—Н33А	119.5	C132—C133—H13D	119.4
C35—C34—C33	118.7 (2)	C133—C134—C135	119.1 (2)
С35—С34—Н34А	120.6	С133—С134—Н13Е	120.5
С33—С34—Н34А	120.6	С135—С134—Н13Е	120.5
C34—C35—C36	120.8 (2)	C136—C135—C134	120.6 (2)
С34—С35—Н35А	119.6	C136—C135—H13F	119.7
С36—С35—Н35А	119.6	C134—C135—H13F	119.7
C31—C36—C35	120.3 (2)	C135—C136—C131	119.8 (2)
С31—С36—Н36А	119.9	C135—C136—H13G	120.1
С35—С36—Н36А	119.9	C131—C136—H13G	120.1
C46—C41—C42	119.5 (2)	C142—C141—C146	119.1 (2)
C46—C41—N4	118.55 (19)	C142—C141—N14	122.70 (19)
C42—C41—N4	121.95 (18)	C146—C141—N14	118.2 (2)
C41—C42—C43	119.4 (2)	C143—C142—C141	120.1 (2)
C41—C42—H42A	120.3	C143—C142—H14C	119.9
C43—C42—H42A	120.3	C141—C142—H14C	119.9
C44—C43—C42	121.5 (2)	C144—C143—C142	120.9 (2)
C44—C43—H43A	119.3	C144—C143—H14D	119.6
C42—C43—H43A	119.3	C142—C143—H14D	119.6
C43—C44—C45	118.6 (2)	C145—C144—C143	119.1 (3)
C43—C44—H44A	120.7	C145—C144—H14E	120.4
C45—C44—H44A	120.7	C143—C144—H14E	120.4
C46—C45—C44	120.8 (2)	C144—C145—C146	120.9 (3)
C46—C45—H45A	119.6	C144—C145—H14F	119.6
C44—C45—H45A	119.6	C146—C145—H14F	119.6
C41—C46—C45	120.2 (2)	C145—C146—C141	119.9 (2)
C41—C46—H46A	119.9	C145—C146—H14G	120.0
C45—C46—H46A	119.9	C141—C146—H14G	120.0
C56—C51—C52	119.3 (2)	C156—C151—C152	119.05 (19)
C56—C51—N5	118.84 (19)	C156—C151—N15	121.27 (18)
C52—C51—N5	121.86 (19)	C152—C151—N15	119.66 (19)
C53—C52—C51	119.6 (2)	C153—C152—C151	120.1 (2)
C53—C52—H52A	120.2	С153—С152—Н15С	119.9
C51—C52—H52A	120.2	C151—C152—H15C	119.9
C54—C53—C52	121.5 (2)	C152—C153—C154	120.8 (2)
С54—С53—Н53А	119.3	C152—C153—H15D	119.6
С52—С53—Н53А	119.3	C154—C153—H15D	119.6
C53—C54—C55	119.1 (2)	C155—C154—C153	119.0 (2)
C53—C54—H54A	120.4	C155—C154—H15E	120.5
С55—С54—Н54А	120.4	C153—C154—H15E	120.5
C54—C55—C56	120.4 (2)	C154—C155—C156	120.8 (2)
С54—С55—Н55А	119.8	C154—C155—H15F	119.6
С56—С55—Н55А	119.8	C156—C155—H15F	119.6
C51—C56—C55	120.1 (2)	C155—C156—C151	120.22 (19)
C51—C56—H56A	120.0	C155—C156—H15G	119.9
С55—С56—Н56А	120.0	C151—C156—H15G	119.9

O2—P2—N1—C11	21.87 (16)	O11—P11—N11—C111	-23.10 (15)
N4—P2—N1—C11	146.60 (13)	N12—P11—N11—C111	-147.51 (13)
N5—P2—N1—C11	-100.16 (14)	N13—P11—N11—C111	99.21 (14)
O2—P2—N1—P1	-176.79 (9)	O11—P11—N11—P12	171.23 (10)
N4—P2—N1—P1	-52.06 (13)	N12—P11—N11—P12	46.82 (13)
N5—P2—N1—P1	61.18 (12)	N13—P11—N11—P12	-66.47 (12)
O1—P1—N1—C11	178.04 (13)	O12—P12—N11—C111	-176.42 (13)
N3—P1—N1—C11	52.30 (16)	N14—P12—N11—C111	-50.77 (15)
N2—P1—N1—C11	-53.94 (16)	N15—P12—N11—C111	56.30 (15)
O1—P1—N1—P2	17.03 (13)	O12—P12—N11—P11	-11.10(13)
N3—P1—N1—P2	-108.70 (11)	N14—P12—N11—P11	114.55 (11)
N2—P1—N1—P2	145.06 (11)	N15—P12—N11—P11	-138.39 (11)
O1—P1—N2—C21	55.5 (2)	O11—P11—N12—C121	-37.91 (18)
N3—P1—N2—C21	-178.12 (18)	N13—P11—N12—C121	-162.60 (16)
N1—P1—N2—C21	-64.6 (2)	N11—P11—N12—C121	85.48 (17)
O1—P1—N3—C31	-42.3 (2)	O11—P11—N13—C131	-34.9 (2)
N2—P1—N3—C31	-171.27 (17)	N12—P11—N13—C131	87.78 (18)
N1—P1—N3—C31	78.20 (18)	N11—P11—N13—C131	-153.80 (16)
O2—P2—N4—C41	41.43 (18)	O12—P12—N14—C141	47.0 (2)
N5—P2—N4—C41	165.65 (16)	N15—P12—N14—C141	175.52 (17)
N1—P2—N4—C41	-81.78 (17)	N11—P12—N14—C141	-73.25 (18)
O2—P2—N5—C51	44.7 (2)	O12—P12—N15—C151	-66.66 (19)
N4—P2—N5—C51	-78.24 (18)	N14—P12—N15—C151	166.65 (17)
N1—P2—N5—C51	163.63 (16)	N11—P12—N15—C151	53.16 (18)
P2-N1-C11-C16	70.9 (2)	P11—N11—C111—C112	103.13 (18)
P1—N1—C11—C16	-91.6 (2)	P12—N11—C111—C112	-90.05 (19)
P2—N1—C11—C12	-107.44 (17)	P11—N11—C111—C116	-75.1 (2)
P1—N1—C11—C12	89.97 (19)	P12—N11—C111—C116	91.74 (19)
C16—C11—C12—C13	0.1 (3)	C116—C111—C112—C113	0.3 (3)
N1-C11-C12-C13	178.48 (18)	N11-C111-C112-C113	-177.92 (18)
C11—C12—C13—C14	-0.7 (3)	C111—C112—C113—C114	0.2 (3)
C12-C13-C14-C15	0.2 (4)	C112—C113—C114—C115	-0.1 (3)
C13-C14-C15-C16	1.0 (4)	C113—C114—C115—C116	-0.5 (3)
C12-C11-C16-C15	1.0 (3)	C112—C111—C116—C115	-0.9 (3)
N1-C11-C16-C15	-177.35 (18)	N11—C111—C116—C115	177.32 (18)
C14—C15—C16—C11	-1.5 (3)	C114—C115—C116—C111	1.0 (3)
P1—N2—C21—C26	4.7 (3)	P11—N12—C121—C122	32.5 (3)
P1—N2—C21—C22	-174.80 (16)	P11-N12-C121-C126	-149.86 (15)
C26—C21—C22—C23	-0.3 (3)	C126—C121—C122—C123	0.9 (3)
N2-C21-C22-C23	179.2 (2)	N12-C121-C122-C123	178.54 (18)
C21—C22—C23—C24	0.4 (4)	C121—C122—C123—C124	-1.1 (3)
C22—C23—C24—C25	0.0 (4)	C122—C123—C124—C125	0.3 (3)
C23—C24—C25—C26	-0.5 (4)	C123—C124—C125—C126	0.8 (3)
C22—C21—C26—C25	-0.2 (3)	C124—C125—C126—C121	-0.9 (3)
N2-C21-C26-C25	-179.7 (2)	C122—C121—C126—C125	0.1 (3)
C24—C25—C26—C21	0.7 (4)	N12-C121-C126-C125	-177.63 (18)
P1—N3—C31—C36	43.0 (3)	P11—N13—C131—C132	-25.2 (3)
P1—N3—C31—C32	-138.28 (19)	P11—N13—C131—C136	153.17 (16)
C36—C31—C32—C33	0.8 (4)	C136—C131—C132—C133	0.7 (3)

N3—C31—C32—C33	-178.0 (2)	N13-C131-C132-C133	179.1 (2)
C31—C32—C33—C34	0.0 (4)	C131—C132—C133—C134	0.0 (4)
C32—C33—C34—C35	-0.5 (5)	C132—C133—C134—C135	-0.4 (4)
C33—C34—C35—C36	0.3 (4)	C133—C134—C135—C136	-0.1 (4)
C32—C31—C36—C35	-0.9 (3)	C134—C135—C136—C131	0.9 (3)
N3-C31-C36-C35	177.75 (19)	C132—C131—C136—C135	-1.2 (3)
C34—C35—C36—C31	0.4 (4)	N13-C131-C136-C135	-179.58 (19)
P2-N4-C41-C46	140.39 (17)	P12-N14-C141-C142	-33.7 (3)
P2—N4—C41—C42	-42.1 (3)	P12-N14-C141-C146	147.07 (19)
C46—C41—C42—C43	-2.3 (3)	C146—C141—C142—C143	-2.0 (3)
N4—C41—C42—C43	-179.86 (19)	N14-C141-C142-C143	178.8 (2)
C41—C42—C43—C44	1.8 (3)	C141—C142—C143—C144	0.6 (4)
C42—C43—C44—C45	0.2 (4)	C142—C143—C144—C145	1.4 (5)
C43—C44—C45—C46	-1.7 (4)	C143—C144—C145—C146	-1.9 (5)
C42—C41—C46—C45	0.9 (3)	C144—C145—C146—C141	0.5 (5)
N4—C41—C46—C45	178.47 (19)	C142—C141—C146—C145	1.5 (4)
C44—C45—C46—C41	1.2 (4)	N14-C141-C146-C145	-179.3 (2)
P2-N5-C51-C56	-165.66 (17)	P12-N15-C151-C156	19.9 (3)
P2-N5-C51-C52	12.6 (3)	P12-N15-C151-C152	-158.11 (16)
C56—C51—C52—C53	-1.1 (3)	C156—C151—C152—C153	-1.0 (3)
N5-C51-C52-C53	-179.32 (19)	N15-C151-C152-C153	177.1 (2)
C51—C52—C53—C54	0.1 (3)	C151—C152—C153—C154	0.3 (4)
C52—C53—C54—C55	0.4 (4)	C152—C153—C154—C155	0.2 (4)
C53—C54—C55—C56	0.1 (4)	C153—C154—C155—C156	-0.2 (3)
C52—C51—C56—C55	1.6 (3)	C154—C155—C156—C151	-0.5 (3)
N5-C51-C56-C55	179.9 (2)	C152—C151—C156—C155	1.0 (3)
C54—C55—C56—C51	-1.1 (4)	N15-C151-C156-C155	-176.99 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A…O11	0.866 (9)	2.386 (14)	3.117 (2)	142.4 (17)
N3—H3A…O11	0.868 (9)	1.911 (10)	2.769 (2)	169.2 (18)
N4— $H4A$ ···O12 ⁱ	0.870 (7)	2.220 (10)	3.032 (2)	155.3 (17)
N4—H4A…O1	0.870 (7)	2.455 (17)	2.959 (2)	117.5 (15)
N5—H5A	0.852 (9)			
N12—H12B···O1 ⁱⁱ	0.867 (9)	2.221 (11)	3.044 (2)	158.4 (17)
N12—H12B…O12	0.867 (9)	2.471 (18)	2.963 (2)	116.6 (15)
N13—H13B	0.860 (9)			
N14—H14B…O2 ⁱⁱⁱ	0.872 (7)	2.002 (8)	2.856 (2)	166.0 (18)
N15—H15B…O2 ⁱⁱⁱ	0.868 (9)	2.138 (11)	2.962 (2)	158.4 (18)
Symmetry codes: (i) $-r+3/2 + 1/2 = r$	(ii) $-r+3/2$ $r=1/2$ $r:$ (iii) $r+1/2$	$2 + \frac{-\pi + 3}{2}$		

Symmetry codes: (i) -x+3/2, y+1/2, z; (ii) -x+3/2, y-1/2, z; (iii) x+1/2, y, -z+3/2.

